
Stone Door Group and Red Hat
OpenShift Technical Workshop
Migrating Legacy Java Applications to DevOps enabled OpenShift on
IBM Cloud

17 March 2022
Virtual Event, Earth

Exercise 0: Establishing your IBM ID
You should have received an email similar to the following:

1. Click the Join now! link in your email.

2. In the web form, add your first and last name, enter a password, and click Join
Account.

Note: The web form does not accept some special characters. If you use initials for your
name (like “J. D. Doe”), remove spaces and periods so that only alphabetic characters
are used in the form (example: “JD” for first name).

On successful registration, you should see a confirmation similar to the following:

3. Click the Log in button to show the login page. Enter your IBM ID and click Continue.

4. After entering your password and logging into the IBM Cloud web interface, navigate to
your clusters list by clicking the menu link in the upper left corner, then click OpenShift >
Clusters.

5. Once you reach your clusters list, click mycluster-us-south-1 to access the OpenShift
cluster.

6. Finally, click the OpenShift web console button in the upper right to access the
OpenShift web interface.

Exercise 1: Verifying Access to the Environment

Log into the web console
1. Open your web browser and connect to the following URL.

https://console-openshift-console.mycluster-us-south-764377-85853ed96992ad4cf
d8a12f081018409-0000.us-south.containers.appdomain.cloud/k8s/cluster/projects

2. Enter the user name and password for your IBM ID.

Log into the bastion host
3. Using your SSH client, connect to the following host and provide the following

credentials:

bastion01.demo1.pd.stonedoor.io

Username: the portion of your IBM ID which precedes the @ sign (all lowercase) and
replace “+” with “-” (ex: “student+1001@stonedoorgroup.com” becomes username
“student-1001”
Password: RedHat2022

Connect to the OpenShift cluster using the ‘oc’ command from the
bastion host
To connect to the OpenShift cluster on the command line, you will supply the URL of the
OpenShift API which may be different than the web console URL.

4. Use the following commands to log into the OpenShift cluster and confirm that you can
see the project created in step 3 above.

Note: The backslash “\” is used to escape (ignore) the carriage return so that all the text
below is considered to be on the same line.

oc login -u <IBM ID> --insecure-skip-tls-verify=true \
https://c115-e.us-south.containers.cloud.ibm.com:30465

oc whoami
oc get projects

mailto:student+1001@stonedoorgroup.com

Set INITIALS environment variable
Use the following command to set the INITIALS environment variable for your bastion host
account:

echo “export INITIALS=<your initials>” >> ~/.bashrc
source ~/.bashrc

So if your initials are “C. J.” your command would look like this (please use lowercase letters):

echo “export INITIALS=cj” >> ~/.bashrc
source ~/.bashrc

Note: The ${INITIALS} notation will be used throughout this document. Always replace the
${INITIALS} with the same unique string.

Exercise 2: Deploying a Java Application using an
OpenShift Template

Create a New Project for your Application
1. Use the following command from the bastion host to create your new project.

oc new-project ${INITIALS}-java-template

2. Confirm that the project was created by running the following command.

oc get projects

3. You can also confirm that the project was created by looking at the Projects page in the
web console.

https://console-openshift-console.mycluster-us-south-764377-85853ed96992ad4cf
d8a12f081018409-0000.us-south.containers.appdomain.cloud/k8s/cluster/projects

Deploy the Application
4. Navigate to the application catalog for your project (change the ${INITIALS} in the URL

to your initials).

https://console-openshift-console.mycluster-us-south-764377-85853ed96992ad4cf
d8a12f081018409-0000.us-south.containers.appdomain.cloud/catalog/ns/${INITIAL
S}-java-template

5. Select the OpenJDK template
6. Review the information about the application to be deployed and click Create.
7. On the Administrator perspective, select Workloads > Pods. You should see a pod

named openjdk-app-1-build.
8. Click the openjdk-app-1-build pod and select the Logs tab. This will show you the log

output of the application build process.
9. When the build has completed, you should see a message similar to the following.

Successfully pushed
image-registry.openshift-image-registry.svc:5000/${INITIALS}-java-template/java@sha25
6:d0bf05ee333421cdf1554dca588edf27f82f08a2b5d5fad2b14cfea25bbea0a9
Push successful

10. When you see the above message, click Workloads > Pods again and confirm that you
have a running application pod. It will have the same first two terms of the build pod
(openjdk-app-1) but will then have a five character random string. It will look similar to
the following.

openjdk-app-1-bk9z5

11. Connect to the route for the application and confirm that the web site is reachable from a
browser.

Note: you can find the routes for all applications in your project by navigating to
Networking > Routes in the OpenShift Web Console’s left menu.

http://openjdk-app-${INITIALS}-java-template.mycluster-us-south-764377-85853ed
96992ad4cfd8a12f081018409-0000.us-south.containers.appdomain.cloud/

You should see the phrase “Hello World” in your browser.

Exercise 3: Working with the Deployed Application

Gathering Information
1. From the bastion host command line, run the following command to see some of the

resources created by the application template in exercise 2.

oc get all

You should see the following resources:
○ Pod
○ Service
○ Route
○ ImageStream
○ BuildConfig
○ Build
○ DeploymentConfig

2. In addition to the above resources, you can see other resources and information with the
following commands. Run these commands to learn more about these resources.

oc get serviceaccounts
oc get secrets
oc get events
oc describe pod <name of pod>
oc describe service openjdk-app
oc describe deploymentconfig openjdk-app
oc describe buildconfig openjdk-app

Viewing Logs
3. In exercise 2, step 10, you viewed the logs for the build pod. Navigate to the application

pod in the web console and view its logs.
4. Run the following command from the bastion host and compare the log output from the

CLI to the log output in the web console.

oc logs openjdk-app-1-build

Interacting with Containers
5. Run the command below to find the pod name for your running application. Look for the

pod with Status = Running and note its name, which will end with a 5 character random
string.

oc get pods

6. Run the following commands to log into your running container

oc rsh openjdk-app-1-RRRRR (where RRRRR is a 5 character random string)

7. Switch to the bash shell.

exec bash

8. Note the running container’s UID and GID.

id

Notice that the UID is a non-privileged user and that the GID is root. This is the standard
configuration for containers running in OpenShift.

9. Exit the pod and delete it. Watch the replication controller spin up a new pod.

exit
oc delete pod openjdk-app-1-RRRRR
oc get pods

Making Changes at Run Time
10. Run the following command to edit the Deployment.

Note: The default editor in this configuration will be vi. If you are not familiar with vi, you
may skip this step. If you prefer the nano editor, you may optionally run this command
first to set that as your default editor: export OC_EDITOR=nano.

oc edit deploymentconfig openjdk-app

11. On line 18, change the number of replicas to 2. Save and quit, then observe the second
pod spinning up automatically with the following command.

oc get pods -w

The -w switch means watch. Updates to the status of pods will be shown on the
command line. When you see the new pod running, you can break out of the command
with Ctrl-C and get the current state of the pods with oc get pods without the -w switch.

12. Run the following command to change the number of running pods without editing the
DeploymentConfig.

oc scale --replicas=3 deploymentconfig openjdk-app
oc get pods

13. Run the following command to change the number of running pods back to “1” without
editing the Deployment.

oc scale --replicas=1 deploymentconfig openjdk-app
oc get pods

Exercise 4: Cloning an Application into Your Own
Git Repository

Create a User Account
If you already have an account on github.com, you may use that account for these lab
exercises. If you do not already have an account, you can sign up for one at github.com
at the following URL.

The webhooks configured in this workshop are specific to github.

https://github.com/join

Create Your Repository
1. Create a new repository called openjdk-app-sdg-workshop. This should be a public

repository so that you do not need to configure authentication for these exercises.
Select Initialize this Repository with a README (or similar for your git server).

2. On the bastion host, clone the repo. You can get the clone URL from the repository itself
by clicking the Clone button and selecting Clone with HTTPS.

cd $HOME

git clone <URL>

You should have a directory in your bastion host home directory named
openjdk-app-sdg-workshop

Clone the Original Repository to the Bastion Host
3. Run the following command from your home directory on the bastion host to clone the

example application.

git clone https://github.com/jboss-openshift/openshift-quickstarts

You should now have a directory named openshift-quickstarts in your bastion host
home directory.

Push the Code to Your Repository
4. Copy the code from the openshift-quickstarts directory to the

openjdk-app-sdg-workshop directory.

cp -r ~/openshift-quickstarts/* ~/openjdk-app-sdg-workshop/

5. Upload the code to your git server.

cd ~/openjdk-app-sdg-workshop/

Update the git config with your information (must match your git login)

git config --global user.email "you@example.com"
git config --global user.name "Your Name"
git config --global push.default simple

Add code, commit, and push.

git add *
git commit -m “initial upload”
git push

Enter your username and password when prompted.

Exercise 5: Using the ‘oc new-app’ Command to
Deploy an Application

Create a New Project for this version of the Application
1. From the bastion host command line, run the following command to create a new

project.

oc new-project ${INITIALS}-new-app

Deploy the Application
2. Run the following command to deploy the Java code from the git repository you created

in exercise 4.

oc new-app java:latest~https://<repo_url> --context-dir=/undertow-servlet

Note: include the .git extension the repo_url.

Expose the Service
The template that was deployed in exercise 2 included a route for the application. The oc
new-app command will create several of the resources to support an application on OpenShift
but it does not create a route. You will have to create a route by exposing the service with the
following command.

oc expose svc openjdk-app-sdg-workshop

Verify the Application Deployment
3. Get the route for the application and connect to it in your browser. Do you see the

application?

Exercise 6: Rebuilding an Application after Code
Change (manually)

Update Code and Push it to Repository
1. Edit the home page of the application and change the Hello World text to Hello IBM

Cloud World. If you are not familiar with vi or other GNU/Linux editors, nano is
relatively easy to use.

cd ~/openjdk-app-sdg-workshop
nano
./undertow-servlet/src/main/java/org/openshift/quickstarts/undertow/servlet/Servle
tServer.java

ctrl-w (opens search box)
Hello (search for overview)

change to Hello IBM Cloud World

ctrl-x (exit)
Y (confirm save)
<Enter> (exit editor)

2. Add, commit, and push the update.

git add
./undertow-servlet/src/main/java/org/openshift/quickstarts/undertow/servlet/Servle
tServer.java
git commit -m "updated Hello World heading"
git push

Use ‘oc start-build’ to Re-build the Application
3. Run the following command to start a new build with the updated code.

oc start-build buildconfig.build.openshift.io/openjdk-app-sdg-workshop

4. You can run the following command to follow the build progress.

oc logs -f build/openjdk-app-sdg-workshop-2

Verify the Change
5. Connect to the route for the application after the new pods are launched and confirm the

update to the web page.

Exercise 7: Deploy Sample Application for OpenShift
Pipelines
Now that you are familiar with deploying and managing applications manually, let’s look at
managing applications with OpenShift Pipelines. You will use a simple application during this
tutorial, which has a frontend and backend.

1. Create a project for the sample application that you will be using in this tutorial:

oc new-project ${INITIALS}-pipelines-tutorial

2. Run the following command to see the pipeline service account:

oc get serviceaccount pipeline

OpenShift Pipelines automatically adds and configures a ServiceAccount named
pipeline that has sufficient permissions to build and push an image. This service account
will be used later in the tutorial.

3. Install the apply-manifests and update-deployment tasks from the
openshift/pipelines-tutoral repository.

oc create -f
https://raw.githubusercontent.com/openshift/pipelines-tutorial/master/01_pipeline/
01_apply_manifest_task.yaml -n ${INITIALS}-pipelines-tutorial

oc create -f
https://raw.githubusercontent.com/openshift/pipelines-tutorial/master/01_pipeline/
02_update_deployment_task.yaml -n ${INITIALS}-pipelines-tutorial

4. List the tasks:

oc get tasks

You should see output similar to the following:

NAME AGE
apply-manifests 10 seconds ago
update-deployment 4 seconds ago

5. We will be using buildah ClusterTasks, which gets installed along with the OpenShift
Pipelines Operator. To list ClusterTasks on the cluster, use the following command.

oc get clustertasks

You should see output similar to the following:

NAME DESCRIPTION AGE
buildah 1 day ago
buildah-v0-11-3 1 day ago
jib-maven 1 day ago
kn 1 day ago
maven 1 day ago
openshift-client 1 day ago
openshift-client-v0-11-3 1 day ago
s2i 1 day ago
s2i-dotnet-3 1 day ago
…

Exercise 8: Creating a Pipeline
A pipeline defines a number of tasks that should be executed and how they interact with each
other via their inputs and outputs.

In this exercise, you will create a pipeline that takes the source code of the application from
GitHub and then builds and deploys it on OpenShift.

1. Create the pipeline by running the following:

oc create -f
https://raw.githubusercontent.com/openshift/pipelines-tutorial/master/01_pipeline/
04_pipeline.yaml -n ${INITIALS}-pipelines-tutorial

2. List your pipelines

oc get pipelines

3. Review the pipeline yaml

oc get pipeline build-and-deploy -o yaml

You may alternately look at the YAML in the web console by navigating to the Pipelines
menu in the Developer perspective:

Exercise 9: Triggering the Pipeline
Now that the pipeline is created, you can trigger it to execute the tasks specified in the pipeline.

1. A PipelineRun is how you can start a pipeline and tie it to the git and image resources
that should be used for this specific invocation. You can start the pipeline using tkn:

tkn pipeline start build-and-deploy \
-w

name=shared-workspace,volumeClaimTemplateFile=https://raw.githubusercontent
.com/openshift/pipelines-tutorial/master/01_pipeline/03_persistent_volume_claim.
yaml \

-p deployment-name=pipelines-vote-api \
-p git-url=https://github.com/openshift/pipelines-vote-api.git \
-p

IMAGE=image-registry.openshift-image-registry.svc:5000/${INITIALS}-pipelines-tut
orial/pipelines-vote-api \

--use-param-defaults

tkn pipeline start build-and-deploy \
-w

name=shared-workspace,volumeClaimTemplateFile=https://raw.githubusercontent
.com/openshift/pipelines-tutorial/master/01_pipeline/03_persistent_volume_claim.
yaml \

-p deployment-name=pipelines-vote-ui \
-p git-url=https://github.com/openshift/pipelines-vote-ui.git \
-p

IMAGE=image-registry.openshift-image-registry.svc:5000/${INITIALS}-pipelines-tut
orial/pipelines-vote-ui \

--use-param-defaults

2. As soon as you start the build-and-deploy pipeline, a pipelinerun will be instantiated and
pods will be created to execute the tasks that are defined in the pipeline.

tkn pipeline list

You should see output similar to the following:

NAME AGE LAST RUN STARTED DURATION
STATUS

build-and-deploy 6 minutes ago build-and-deploy-run-xy7rw 36 seconds ago ---
Running

3. Check out the logs of the pipelinerun as it runs using the tkn pipeline logs command
which interactively allows you to pick the pipelinerun of your interest and inspect the
logs:

tkn pipeline logs -f

You should see output similar to the following:

? Select pipelinerun: [Use arrows to move, type to filter]
> build-and-deploy-run-xy7rw started 36 seconds ago
build-and-deploy-run-z2rz8 started 40 seconds ago

4. Confirm completion by running the following command.

tkn pipelinerun list

You should see output similar to the following:

NAME STARTED DURATION STATUS
build-and-deploy-run-xy7rw 1 hour ago 2 minutes Succeeded
build-and-deploy-run-z2rz8 1 hour ago 19 minutes Succeeded

5. In the OpenShift web UI, you can see the pipeline runs by clicking on PipelineRuns
under your build-and-deploy pipeline.

6. Looking back at the project, you should see that the images are successfully built and
deployed. Navigate to the Topology page in the Developer perspective for your project.

7. You can get the route of the application by executing the following command and access
the application (or use the Web UI).

oc get route pipelines-vote-ui --template='http://{{.spec.host}}'

8. If you want to re-run the pipeline again, you can use the following short-hand command
to rerun the last pipelinerun again that uses the same pipeline resources and service
account used in the previous pipeline run:

tkn pipeline start build-and-deploy --last

Note: Whenever there is any change to your repository we need to start pipeline
explicitly to see new changes to take effect

You can also re-run a PipelineRun by selecting Rerun from the Actions menu on the
PipelineRun details page.

Exercise 10: Configuring Triggers
Triggers, in conjunction with pipelines, enable us to configure our Pipelines to respond to
external github events (push events, pull requests etc).

In this exercise, we will add a TriggerTemplate, TriggerBinding, and an EventListener to our
project.

Prepare Resource Files
These files need to be cloned locally and one updated to match the actual project name in use.

git clone https://github.com/openshift/pipelines-tutorial
sed -i "s/5000\/pipe/5000\/${INITIALS}-pipe/" \

pipelines-tutorial/03_triggers/02_template.yaml

Trigger Templates
A TriggerTemplate is a resource which has parameters that can be substituted anywhere within
the resources of the template.

Run the following command to apply TriggerTemplate.

oc create -f pipelines-tutorial/03_triggers/02_template.yaml

Trigger Bindings
TriggerBindings are maps that enable you to capture fields from an event and store them as
parameters, and replace them in TriggerTemplates whenever an event occurs.

Run the following command to apply the TriggerBinding.

oc create -f pipelines-tutorial/03_triggers/01_binding.yaml

Triggers
Triggers combine TriggerTemplate, TriggerBindings and interceptors. They are used as ref
inside the EventListener.

Run the following command to apply the Trigger.

oc create -f pipelines-tutorial/03_triggers/03_trigger.yaml

Event Listener
This component sets up a Service and listens for events. It also connects a TriggerTemplate to a
TriggerBinding, into an addressable endpoint (the event sink)

Run the following command to create an EventListener.

oc create -f pipelines-tutorial/03_triggers/04_event_listener.yaml

Note: Creating the EventListener will set up a Service. We need to expose that Service as an
OpenShift Route to make it publicly accessible.

Run below command to expose the eventlistener service as a route

oc expose svc el-vote-app

Exercise 11: Configuring GitHub WebHooks
Now we need to configure the webhook-url for backend and frontend source code repositories
with the Route we exposed in the previous exercise.

1. Run below command to get webhook-url:

echo "URL: $(oc get route el-vote-app --template='http://{{.spec.host}}')"

2. Fork the backend and frontend source code repositories so that you have sufficient
privileges to configure GitHub webhooks. To fork the repositories, click the fork button
at the top of each repository.

Repos:
http://github.com/openshift/pipelines-vote-api.git
http://github.com/openshift/pipelines-vote-ui.git

3. Open the forked github repo (Go to Settings > Webhooks) click on Add webhook

4. Add the results of the following command to payload URL:

echo "$(oc get route el-vote-app --template='http://{{.spec.host}}')"

5. Select Content type as application/json > Add secret eg: 1234567 > Click on Add
Webhook

http://github.com/openshift/pipelines-vote-api.git
http://github.com/openshift/pipelines-vote-ui.git

Perform these steps for both pipelines-vote-ui and pipelines-vote-api. Now we should see a
webhook configured on your forked source code repositories (on your GitHub repositories, go to
Settings>Webhooks).

Trigger pipeline Run
When we perform any push event on the pipelines-vote-api repository the following should
happen.

A. The configured webhook in the pipelines-vote-api GitHub repository should push the
event payload to our route (exposed EventListener Service).

B. The Event-Listener will pass the event to the TriggerBinding and TriggerTemplate pair.

C. The TriggerBinding will extract parameters needed for rendering the TriggerTemplate.
Successful rendering of TriggerTemplate should create two PipelineResources
(source-repo-vote-api and image-source-vote-api) and a PipelineRun
(build-deploy-vote-api)

We can test this by pushing a commit to the pipelines-vote-api repository from GitHub web ui
or from terminal.

D. Push an empty commit to vote-api repository.

Option A
Note: Clone one of the forked repos, then cd into the repo directory before running the
command below.

git clone <forked repository URL>
cd <repository directory>
git commit -m "empty-commit" --allow-empty && git push origin master

Option B
Use the GitHub web ui to edit the README file at the top of the repo, then commit the
change to the master branch. Scroll down the page to find the commit button.

E. Watch OpenShift WebConsole Developer perspective and a PipelineRun will be
automatically created.

Exercise 12: Deploying a legacy application which
needs updating to Quarkus

Create a New Project for this Application
F. From the bastion host command line, run the following command to create a new

project.

oc new-project ${INITIALS}-employees

Deploy MySQL
G. Run the following command to deploy the MySQL template into your project.

oc process openshift//mysql-persistent -p MYSQL_USER=sdgdemo
MYSQL_PASSWORD=sdgdemo MYSQL_ROOT_PASSWORD=root
VOLUME_CAPACITY=1G MYSQL_DATABASE=emp | oc create -f -

H. Run the following commands to confirm the database pod is running.

oc get pods

Deploy the Application
I. Run the following command to deploy the Java application code.

oc new-app
registry.access.redhat.com/ubi8/openjdk-8~https://github.com/meidlinger/sdgdem
ospringboot.git --name=springboot-demo

J. Review the build logs

oc logs -f bc/springboot-demo

K. Expose the service for external access

oc expose svc/springboot-demo

L. Verify that the application is working. Go to the Routes section of the Web UI to
determine the URL for your application. When you connect to that URL with a browser,
you should see “Greetings from Spring Boot!”

M. Use the following command to add a person to the database.

curl
http://springboot-demo-${INITIALS}-employees.mycluster-us-south-764377-85853e
d96992ad4cfd8a12f081018409-0000.us-south.containers.appdomain.cloud/v1/api/s
dg/demo/person -d name=Kenny -d title="Consultant"

N. Append the following path to the URL in your browser to confirm the data entry.

/v1/api/sdg/demo/person/title?name=Kenny

You should get “Consultant” in response.

Exercise 13: Deploying the Quarkus application

Deploy the application
1. Run the following command to deploy the Quarkus version of the employees application.

oc new-app
registry.access.redhat.com/ubi8/openjdk-11~https://github.com/meidlinger/sdgde
moquarkus.git#s2i-build --name=quarkus-demo

2. Expose the service.

oc expose svc quarkus-demo

Test by adding data
3. Use the following command to add a person to the database.

curl -X POST
http://quarkus-demo-cjm-qtest2.mycluster-us-south-764377-85853ed96992ad4cfd8
a12f081018409-0000.us-south.containers.appdomain.cloud/v1/api/sdg/demo/perso
n/name/Eddie/title/Guitarist

The result should be similar to:

{"id":2,"employeename":"Eddie","employeetitle":"Guitarist"}

4. Run the following command to list all employees.

curl
http://quarkus-demo-cjm-qtest2.mycluster-us-south-764377-85853ed96992ad4cfd8
a12f081018409-0000.us-south.containers.appdomain.cloud/v1/api/sdg/demo/perso
n/all

The result should be similar to:

[{"id":1,"employeename":"Kenny","employeetitle":"Consultant"},{"id":2,"employe
ename":"Eddie","employeetitle":"Guitarist"}]

5. To review the required modifications which converted this application from springboot to
quarkus, clone the repositories and use your favorite tools to compare the differences.

END.

